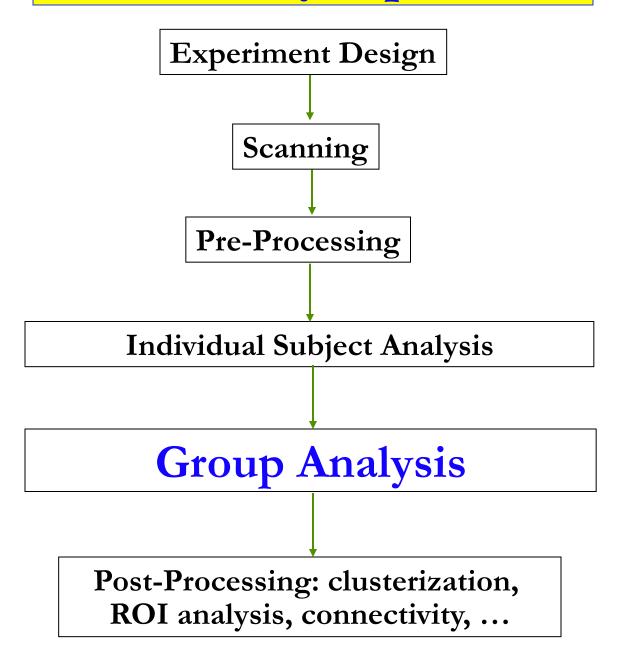
Group Analysis

File: GroupAna.pdf

Gang Chen

SSCC/NIMH/NIH/HHS



10/3/14

FMRI Study Pipeline

Preview

- Introduction: basic concepts
 - Why do we need to do group analysis?
 - o Factor, quantitative covariates, main effect, interaction, ...
- Group analysis approaches
 - *t*-test: 3dttest++ (3dttest), 3dMEMA
 - o Regression: 3dttest++, 3dMEMA, 3RegAna
 - o ANOVA: 3dANOVAx, 3dMVM, GroupAna
 - o ANCOVA or GLM: 3dttest++, 3dMEMA, 3dMVM, 3dLME
 - o Impact & consequence of SFM, SAM, and SEM
- Miscellaneous
 - Centering for covariates
 - Issues regarding result reporting
 - Intra-Class Correlation (ICC)
 - Nonparametric approach and fixed-effects analysis

Why Group Analysis?

- Evolution of FMRI studies
 - Early days: no need for group analysis
 - Seed-based correlation for one subject was revolutionary
 - Now: torture brain/data enough, and hope nature will confess!
 - Many ways to manipulate the brain (and data)
- Reproducibility and generalization
 - Science strives for generality: summarizing subject results
 - Typically 10 or more subjects per group
 - Exceptions: pre-surgical planning, lie detection, ...
- Why not one analysis with a mega model for all subjects?
 - Computationally unmanageable
 - o Heterogeneity in data or experiment design across subjects
 - Model quality check at individual subject level

Toy example of group analysis

- Responses from a group of subjects under one condition
 - \circ What we have: $(\beta_1, \beta_2, ..., \beta_{10}) = (1.13, 0.87, ..., 0.72)$
- Centroid: average $(\beta_1 + \beta_2 + ... + \beta_{10})/10 = 0.92$ is not enough
 - Variation/reliability measure: diversity, spread, deviation
- Model building
 - Subject i's response = group average + deviation of subject i:
 simple model GLM (one-sample t-test)

$$\hat{\beta}_i = b + \epsilon_i, \epsilon_i \sim N(0, \sigma^2)$$

- \circ If individual responses are consistent, ϵ_i should be small
- ∘ How small (*p*-value)?
 - *t*-test: significance measure = $\frac{\hat{b}}{\hat{\sigma}/n}$
- 2 measures: *b* (dimensional) and *t* (dimensionless)

Group Analysis Caveats

- Conventional: voxel-wise (brain) or node-wise (surface)
 - Proper model to account for cross-and within-subject variability
- Results: two components (on afni: OLay + Thr)
 - Effect estimates: have unit and physical meaning
 - Their significance (response to house significantly > face)
 - Very unfortunately p-values solely focused in FMRI!
- Statistical significance (p-value) becomes obsession
 - Published papers: Big and tall parents (violent men, engineers)
 have more sons, beautiful parents (nurses) have more daughters
 - Statistical significance is not the same as practical importance
- Statistically insignificant but the effect magnitude is suggestive
 - Sample size
 - Alignment

Group Analysis Caveats

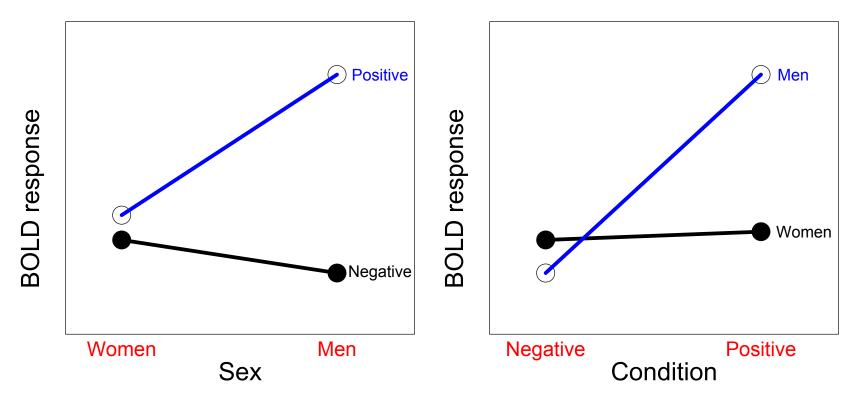
- Conventional: voxel-wise (brain) or node-wise (surface)
 - o Prerequisite: reasonable alignment to some template
 - Limitations: alignment could be suboptimal or even poor
 - Different folding patterns across subjects: better alignment could help
 - Different cytoarchitectonic (or functional) locations across subjects: alignment won't help!
 - Impact on conjunction vs. selectivity
- Alternative (won't discuss): ROI-based approach
 - Half data for functional localizers, and half for ROI analysis
 - Easier: whole brain reduced to one or a few numbers per subject
 - Model building and tuning possible
 - Most AFNI 3d programs also handle ROI input (1D)

Terminology: Explanatory variables

- Response/Outcome variable (HDR): regression β coefficients
- Factor: categorical, qualitative, nominal or discrete variable
 - Categorization of conditions/tasks
 - Within-subject (repeated-measures) factor
 - Subject-grouping: Group of subjects (sex, normal/patients)
 - Between-subjects factor
 - Gender, patients/controls, genotypes, ...
 - Subject: random factor measuring deviations
 - Of no interest, but served as random samples from a population
- Quantitative (numeric or continuous) covariate
 - Three usages of 'covariate'
 - Quantitative
 - Variable of no interest: qualitative (scanner, sex, handedness) or quantitative
 - Explanatory variable (regressor, independent variable, or predictor)
 - Examples: age, IQ, reaction time, etc.

Terminology: Fixed effects

- Fixed-effects factor: categorical (qualitative or discrete) variable
 - Treated as a fixed variable (constant to be estimated) in the model
 - Categorization of conditions/tasks (modality: visual/auditory)
 - o Within-subject (repeated-measures) factor: 3 emotions
 - Subject-grouping: Group of subjects (gender, normal/patients)
 - o Between-subject factor
 - All levels of a factor are of interest
 - main effect, contrasts among levels
 - Fixed in the sense of statistical inferences
 - Apply only to the specific levels of the factor
 - o Categories: human, tool
 - Don't extend to other potential levels that might have been included
 - o Inferences on human and tool categories can't be generated to animal
- Fixed-effects variable: quantitative covariate

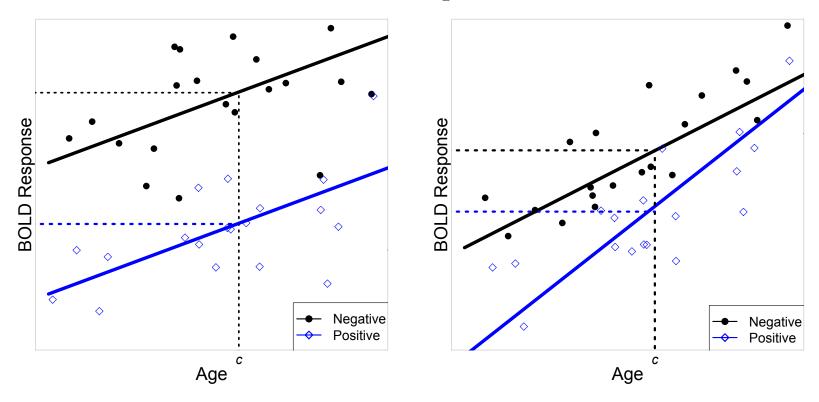

Terminology: Random effects

- Random factor/effect
 - Random variable in the model: exclusively subject in FMRI
 - average + effects uniquely attributable to each subject: e.g. $N(\mu, \tau^2)$
 - Requires enough number of subjects
 - Each individual subject effect is of NO interest
 - Group response = 0.92%, subject 1 = 1.13%, random effect = 0.21%
 - Random in the sense
 - Subjects as random samples (representations) from a population
 - Inferences can be generalized to a hypothetical population
- A generic model: decomposing each subject's response $y_i = X_i \beta + Z_i b_i + \epsilon_i$
 - \circ Fixed (population) effects: universal constants (immutable): β
 - \circ Random effects: individual subject's deviation from the population (personality: durable): b_i
 - \circ Residuals: noise (evanescent): ϵ_i

Terminology: Omnibus tests - main effect and interaction

- Main effect: any difference across levels of a factor?
- Interactions: with ≥ 2 factors, interaction may exist
 - \circ 2 × 2 design: *F*-test for interaction between A and B = *t*-test of (A1B1 A1B2) (A2B1 A2B2) or (A1B1 A2B1) (A1B2 A2B2)
 - t is better than F: a positive t shows

A1B1 - A1B2 > A2B1 - A2B2 and A1B1 - A2B1 > A1B2 - A2B2



Terminology: Interaction

- Interactions: ≥ 2 factors
 - May become very difficult to sort out!
 - \geq 3 levels in a factor
 - $\bullet \ge 3$ factors
 - Solutions: reduction
 - Pairwise comparison
 - Plotting: ROI (Figures don't lie, but liars do figure. Mark Twain)
 - Requires sophisticated modeling
 - AN(C)OVA: 3dANOVAx, 3dMVM, 3dLME
- Interactions: quantitative covariates
 - $_{\circ}$ In addition to linear effects, may have nonlinearity: $x_1 * x_2$, or x^2

Terminology: Interaction

• Interaction: between a factor and a quantitative covariate

- Throw in an explanatory variable in a model as a nuisance regressor (additive effect) may not be enough
 - Model building/tuning: Potential interactions with other explanatory variables?
 - Of scientific interest (e.g., gender difference)

Models at Group Level

- Conventional approach: taking β (or linear combination of multiple β 's) only for group analysis
 - $_{\circ}$ Assumption: all subjects have same precision (reliability, standard error, confidence interval) about β
 - All subjects are treated equally
 - Student *t*-test: paired, one- and two-sample: not random-effects models in strict sense as usually claimed
 - AN(C)OVA, GLM, LME
- Alternative: taking both effect estimates and *t*-statistics
 - t-statistic contains precision information about effect estimates
 - Each subject is weighted based on precision of effect estimate
- All models are some sorts of linear model
 - ∘ *t*-test, AN(C)OVA, LME, MEMA
 - Partition each subject's effect into multiple components

Group Analysis in Neurolmaging: why big models?

- ♦ Various group analysis approaches
 - Student's t-test: one-, two-sample, and paired
 - ANOVA: one or more categorical explanatory variables (factors)
 - GLM: AN(C)OVA
 - LME: linear mixed-effects modeling
- - Tedious when layout is too complex
 - Main effects and interactions: desirable
 - When quantitative covariates are involved
- ♦ Advantages of big models: AN(C)OVA, GLM, LME
 - All tests in one analysis (vs. piecemeal t-tests)
 - Omnibus F-statistics
 - Power gain: combining subjects across groups

Piecemeal t-tests: 2 × 3 Mixed ANCOVA

- Explanatory variables
 - Factor A (Group): 2 levels (patient and control)
 - Factor B (Condition): 3 levels (pos, neg, neu)
 - Factor S (Subject): 15 ASD children and 15 healthy controls
 - Quantitative covariate: Age
- ♦ Multiple t-tests
 - Group comparison + age effect
 - Pairwise comparisons among three conditions
 - Cannot control for age effect
 - Effects that cannot be analyzed
 - Main effect of Condition
 - Interaction between Group and Condition
 - Age effect across three conditions

Classical ANOVA: 2 × 3 Mixed ANCOVA

- Factor A (Group): 2 levels (patient and control)
- Factor B (Condition): 3 levels (pos, neg, neu)
- Factor S (Subject): 15 ASD children and 15 healthy controls
- Covariate (Age): cannot be modeled; no correction for sphericity violation

$$F_{(a-1,a(n-1))}(A) = \frac{MSA}{MSS(A)},$$

$$F_{(b-1,a(b-1)(n-1))}(B) = \frac{MSB}{MSE},$$

$$F_{((a-1)(b-1),a(b-1)(n-1))}(AB) = \frac{MSAB}{MSE}$$

where

$$MSA = \frac{SSA}{a-1} = \frac{1}{a-1} \left(\frac{1}{bn} \sum_{j=1}^{a} Y_{.j.}^{2} - \frac{1}{abn} Y_{...}^{2} \right),$$

$$MSB = \frac{SSB}{b-1} = \frac{1}{b-1} \left(\frac{1}{an} \sum_{k=1}^{b} Y_{..k}^2 - \frac{1}{abn} Y_{...}^2 \right),$$

$$MSAB = \frac{SSAB}{(a-1)(b-1)} = \frac{1}{(a-1)(b-1)} \left(\frac{1}{n} \sum_{j=1}^{a} \sum_{k=1}^{b} Y_{.jk} - \frac{1}{bn} \sum_{j=1}^{a} Y_{.j.}^{2} - \frac{1}{an} \sum_{k=1}^{b} Y_{..k}^{2} + \frac{1}{abn} Y_{...}^{2}\right),$$

$$MSS(A) = \frac{SSS(A)}{a(n-1)} = \frac{1}{a(n-1)} \left(\frac{1}{b} \sum_{i=1}^{n} \sum_{j=1}^{a} Y_{ij.}^{2} - \frac{1}{bn} \sum_{j=1}^{a} Y_{.j.}^{2}\right),$$

$$MSE = \frac{1}{a(b-1)(n-1)} \left(\sum_{i=1}^{n} \sum_{j=1}^{a} \sum_{k=1}^{b} Y_{ijk}^{2} - \frac{1}{n} \sum_{j=1}^{a} \sum_{k=1}^{b} Y_{.jk} - \frac{1}{b} \sum_{i=1}^{n} \sum_{j=1}^{a} Y_{ij.}^{2} + \frac{1}{bn} \sum_{j=1}^{a} Y_{.j.}^{2} + \frac{1}{abn} Y_{...}^{2} \right)$$

Univariate GLM: 2 x 3 mixed ANOVA

Group: 2 levels (patient and control)

Condition: 3 levels (pos, neg, neu)

Difficult to incorporate covariates

Broken orthogonality

No correction for sphericity violation

Subject: 3 ASD children and 3 healthy controls

Subj			X_0	X_1	X_2	X_3	X_4	X_5	X_6	X_7	X_8	X_9		
1	β_{11}		/ 1	1	1	0	1	0	1	0	0	0		δ_{11}
1	β_{12}		1 1 1 1	1		$ \begin{array}{ccc} 1 & 0 \\ -1 & -1 \\ 0 & 1 \\ 1 & 0 \end{array} $	0	1 -1	1 1 0 0 1 0 1	0 0 1 1	$egin{array}{cccc} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$	0 0		δ_{12}
1	β_{13}			1			-1							δ_{13}
2	β_{21}			1	1		1	0						δ_{21}
2	β_{22}			1	0		0	1					$\left(\alpha_0\right)$	δ_{22}
2	β_{23}		1	1	-1	-1	-1	-1		1		α_1	δ_{23}	
3	β_{31}		1 1	1	1	0	1	0	-1	-1	0	0	α_2	δ_{31}
3	β_{32}			1	0	1	0	1	-1	$\cdot 1$ -1	0	0	α_3	δ_{32}
3	£ 32	_	1	1	-1	-1	-1	77	-1	-1	0	0	α_4	\tilde{j}_3 .
4	341	_	1	-1	1	0	-1	0	0	0	1	0	+	S_{41}
4	β_{42}		1 1	-1	$\begin{bmatrix} 1 & -1 \\ 1 & 1 \\ 1 & 0 \end{bmatrix}$	1	0	-1	0 0	1 (0	α_6	δ_{42}	
4	β_{43}			-1		-1	$\begin{array}{cc} 1 \\ -1 \end{array}$	1	0	$\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}$	1	$0 \\ 1 \\ 1 \\ 1 \\ -1$	α_7	δ_{43}
5	β_{51}		1	-1		0		0	$\begin{array}{ccc} 1 & 0 & 0 \\ 1 & 0 & 0 \end{array}$		0		$\begin{pmatrix} \alpha_8 \\ \alpha_9 \end{pmatrix}$	δ_{51}
5	β_{52}		1	-1		1	0	-1		0	0			δ_{52}
5	β_{53}		1	-1		-1	1	1			$0 \\ -1$, ,	δ_{53}
6	β_{61}		1	-1		0	-1	0						δ_{61}
6	β_{62}		1	-1	0	1	0	-1	0	0	-1	-1		δ_{62}
6	$\setminus \beta_{63}$		\ 1	-1	-1	-1	1	1	0	0	-1	-1		$\left(\delta_{63}\right)$

Univariate GLM: popular in neuroimaging

- ♦ Advantages: more *flexible* than the method of sums of squares
 - No limit on the the number of explanatory variables (in principle)
 - Easy to handle unbalanced designs
 - Covariates can be modeled when no within-subject factors present
- ♦ Disadvantages: costs paid for the flexibility
 - Intricate dummy coding
 - Tedious pairing for numerator and denominator of F-stat
 - Proper denominator SS
 - Can't generalize (in practice) to any number of explanatory variables
 - Susceptible to invalid formulations and problematic post hoc tests
 - Cannot handle covariates in the presence of within-subject factors
 - No direct approach to correcting for sphericity violation
 - Unrealistic assumption: same variance-covariance structure
- ♦ Problematic: When residual SS is adopted for all tests
 - F-stat: valid only for highest order interaction of within-subject factors
 - Most post hoc tests are inappropriate

Our Approach: Multivariate GLM

- Group: 2 levels (patient and control)
- Condition: 3 levels (pos, neg, neu)
- Subject: 3 ASD children and 3 healthy controls
- Age: quanţitative covariate

$$\boldsymbol{B}_{n\times m} = \boldsymbol{X}_{n\times q} \boldsymbol{A}_{q\times m} + \boldsymbol{D}_{n\times m}$$

Why taking β values for group analysis?

- \diamond Statistics (t, F)
 - Dimensionless
 - No physical meaning
 - Sensitive to sample size (#trials, #subjects) & signal-to-noise ratio
 - Are *t*-values of 4 and 100 (or *p*-values of 0.05 and 10⁻⁸) really informative? The HDR of the latter is not 25 times larger than the former?
 - Distributional consideration
- $\Leftrightarrow \beta$ values
 - Physical meaning: measuring HDR magnitude: % signal change
- $\Rightarrow \beta$ values + their *t*-statistics
 - More accurate approach: 3dMEMA
 - Mostly about the same as the conventional approach
 - Not always practical

Road Map: Choosing a program?

- ♦ Starting with HDR estimated via shape-fixed method (SFM)
 - \circ One β per condition per subject
 - It could be significantly underpowered (more later)
- ♦ Two perspectives
 - Data structure
 - Ultimate goal: list all the tests you want to perform
 - Possible to avoid a big model
 - Use a piecemeal approach with 3dttest++ or 3dMEMA
- ♦ Most analyses can be done with 3dMVM and 3dLME
 - Computationally inefficient
 - Last resort: not recommended if alternatives are available

Road Map: Student's t-tests

- → 3dttest++ (3dttest) and 3dMEMA
- ♦ Not for F-tests except for ones with 1 DF for numerator
 - All factors are of two levels, e.g., 2 x 2, or 2 x 2 x 2

♦ Scenarios

- One-, two-sample, paired
- Multiple regression: one group + one or more quantitative variables
- ANCOVA: two groups + one or more quantitative variables
- ANOVA through dummy coding: all factors (between- or within-subject)
 are of two levels
- AN(C)OVA: multiple between-subjects factors + one or more quantitative variables
- One group against a whole brain constant: 3dttest -base1 C
- One group against a voxel-wise constant: 3dttest -base1_dset

Road Map: Between-subjects ANOVA

- ♦ One-way between-subjects ANOVA
 - 3dANOVA
 - Two groups: 3dttest++, 3dMEMA (OK with > 2 groups too)
- ♦ Two-way between-subjects ANOVA
 - Equal #subjects across groups: 3dANOVA2 -type 1
 - Unequal #subjects across groups: 3dMVM
 - 2 x 2 design: 3dttest++, 3dMEMA (OK with > 2 groups too)
- ♦ Three-way between-subjects ANOVA
 - 3dANOVA3 -type 1
 - Unequal #subjects across groups: 3dMVM
 - 2 x 2 design: 3dttest++, 3dMEMA (OK with > 2 groups too)
- ♦ N-way between-subjects ANOVA
 - 3dMVM

Road Map: With-subject ANOVA

- ♦ One-way within-subject ANOVA
 - 3dANOVA2 -type 3
 - Two conditions: 3dttest++, 3dMEMA
- - 3dANOVA3 -type 4
 - 2 x 2 design: 3dttest++, 3dMEMA
- ♦ N-way within-subject ANOVA
 - 3dMVM

Road Map: Mixed-type ANOVA and others

- One between- and one within-subject factor
 - Equal #subjects across groups: 3dANOVA3 -type 5
 - Unequal #subjects across groups: 3dMVM
 - 2 x 2 design: 3dttest++, 3dMEMA
- ♦ Other scenarios
 - Multi-way ANOVA: 3dMVM
 - Multi-way ANCOVA (between-subjects covariates only): 3dMVM
 - HDR estimated with multiple basis functions: 3dLME, 3dMVM
 - Missing data: 3dLME
 - Within-subject covariates: 3dLME
 - Subjects genetically related: 3dLME
 - Trend analysis: 3dLME

One-Sample Case

- One group of subjects ($n \ge 10$)
 - o One condition (visual or auditory) effect
 - o Linear combination of multiple effects (visual vs. auditory)
- Null hypothesis H_0 : average effect = 0
 - \circ Rejecting H_0 is of interest!
- Results
 - Average effect at group level (OLay)
 - Significance: *t*-statistic (Thr Two-tailed by default)
- Approaches
 - o uber_ttest.py (gen_group_command.py), 3dttest++ (3dttest), 3dMEMA
- Special cases
 - H_0 : group effect = c (constant): 3dttest -base1 c...
 - o H_0 : group effect = c (voxelwise constant): 3dttest -base1_dset ...

One-Sample Case: Example

• 3dttest++: taking β only for group analysis 3dttest++ -prefix VisGroup -mask mask+tlrc \ -setA 'FP+tlrc[Vrel#0 Coef]' 'FR+tlrc[Vrel#0 Coef]' 'GM+tlrc[Vrel#0 Coef]' • 3dMEMA: taking β and *t*-statistic for group analysis 3dMEMA -prefix VisGroupMEMA -mask mask+tlrc -setA Vis \ FP 'FP+tlrc[Vrel#0 Coef]' 'FP+tlrc[Vrel#0 Tstat]' FR 'FR+tlrc[Vrel#0 Coef]' 'FR+tlrc[Vrel#0 Tstat]' GM 'GM+tlrc[Vrel#0 Coef]' 'GM+tlrc[Vrel#0 Tstat]' -missing data 0

Two-Sample Case

- Two groups of subjects ($n \ge 10$): males and females
 - o One condition (visual or auditory) effect
 - o Linear combination of multiple effects (visual vs. auditory)
 - o Example: Gender difference in emotion effect?
- Null hypothesis H_0 : Group 1 = Group 2
 - o Results
 - Group difference in average effect
 - Significance: t-statistic Two-tailed by default
- Approaches
 - uber_ttest.py, 3dttest++, 3dMEMA
 - One-way between-subjects ANOVA
 - 3dANOVA: can also obtain individual group test

Paired Case

- One groups of subjects ($n \ge 10$)
 - o 2 conditions (visual or auditory): no missing data allowed (3dLME)
- Null hypothesis H_0 : Condition1 = Condition2
 - o Results
 - Average difference at group level
 - Significance: t-statistic (two-tailed by default)
- Approaches
 - o uber_ttest.py, 3dttest++ (3dttest), 3dMEMA
 - o One-way within-subject (repeated-measures) ANOVA
 - 3dANOVA2 –type 3: can also obtain individual condition test
 - o Missing data (3dLME): only 10 among 20 subjects have both
- Essentially equivalent to one-sample case: use contrast as input

Paired Case: Example

• 3dttest++: comparing two conditions

```
3dttest++ -prefix Vis Aud
 -mask mask+tlrc -paired
 -setA 'FP+tlrc[Vrel#0 Coef]'
        'FR+tlrc[Vrel#0 Coef]'
        . . . . . .
        'GM+tlrc[Vrel#0 Coef]'
 -setB 'FP+tlrc[Arel#0 Coef]'
        'FR+tlrc[Arel#0 Coef]'
        'GM+tlrc[Arel#0 Coef]'
```

Paired Case: Example

- 3dMEMA: comparing two conditions using subject-level response magnitudes and estimates of error levels
 - Contrast has to come from each subject

```
3dMEMA -prefix Vis_Aud_MEMA
-mask mask+tlrc -missing_data 0
-setA Vis-Aud

FP 'FP+tlrc[Vrel-Arel#0_Coef]' 'FP+tlrc[Vrel-Arel#0_Tstat]' \
FR 'FR+tlrc[Vrel-Arel#0_Coef]' 'FR+tlrc[Vrel-Arel#0_Tstat]' \
.....

GM 'GM+tlrc[Vrel-Arel#0_Coef]' 'GM+tlrc[Vrel-Arel#0_Tstat]'
```

One-Way Between-Subjects ANOVA

- Two or more groups of subjects $(n \ge 10)$
 - o One condition or linear combination of multiple conditions
 - o Example: visual, auditory, or visual vs. auditory
- Null hypothesis H_0 : Group 1 = Group 2
 - o Results
 - Average group difference
 - Significance: *t* and *F*-statistic (two-tailed by default)
- Approaches
 - o 3dANOVA
 - > 2 groups: pair-group contrasts 3dttest++ (3dttest), 3dMEMA
 - Dummy coding: 3dttest++, 3dMEMA
 - 3dMVM (not recommended)

Multiple-Way Between-Subjects ANOVA

- Two or more subject-grouping factors: factorial
 - o One condition or linear combination of multiple conditions
 - o Example: gender, control/patient, genotype, handedness, ...
- Testing main effects, interactions, single group, group comparisons
 - ∘ Significance: *t* (two-tailed by default) and *F*-statistic
- Approaches
 - Factorial design (imbalance not allowed): two-way (3dANOVA2 type 1), three-way (3dANOVA3 –type 1)
 - o 3dMVM: no limit on number of factors (imbalance allowed)
 - All factors have two levels: uber_ttest.py, 3dttest++, 3dMEMA
 - Using group coding with 3dttest++, 3dMEMA: imbalance allowed

One-Way Within-Subject ANOVA

- Also called one-way repeated-measures: one group of subject ($n \ge 10$)
 - o Two or more conditions: extension to paired *t*-test
 - o Example: happy, sad, neutral
- Main effect, simple effects, contrasts, general linear tests,
 - Significance: *t* (two-tailed by default) and F-statistic
- Approaches
 - o 3dANOVA2 -type 3 (two-way ANOVA with one random factor)
 - With two conditions, equivalent to paired case with 3dttest++
 (3dttest), 3dMEMA
 - With more than two conditions, can break into pairwise comparisons with 3dttest++, 3dMEMA

One-Way Within-Subject ANOVA

• Example: visual vs. auditory condition

```
3dANOVA2 -type 3 -alevels 2 -blevels 10
-prefix Vis Aud -mask mask+tlrc
 -amean 1 Vis -amean 2 Aud -adiff 1 2 V-A \
  -dset 1 1 'FP+tlrc[Vrel#0 Coef]'
  -dset 1 2 'FR+tlrc[Vrel#0 Coef]'
  -dset 1 10 'GM+tlrc[Vrel#0 Coef]'
  -dset 2 1 'FP+tlrc[Arel#0 Coef]'
  -dset 2 2 'FR+tlrc[Arel#0 Coef]'
  -dset 2 10 'GM+tlrc[Arel#0 Coef]'
```

Two-Way Within-Subject ANOVA

- Factorial design; also known as two-way repeated-measures
 - o 2 within-subject factors
 - Example: emotion and category (visual/auditory)
- Testing main effects, interactions, simple effects, contrasts
 - Significance: t- (two-tailed by default) and F-statistic
- Approaches
 - o 3dANOVA3 –type 4 (three-way ANOVA with one random factor)
 - o All factors have 2 levels (2x2): uber_ttest.py, 3dttest++, 3dMEMA
 - o Missing data?
 - Break into t-tests: uber_ttest.py, 3dttest++ (3dttest), 3dMEMA
 - 3dLME

Two-Way Mixed ANOVA

- Factorial design
 - One between-subjects and one within-subject factor
 - Example: gender (male and female) and emotion (happy, sad, neutral)
- Testing main effects, interactions, simple effects, contrasts
 - ∘ Significance: *t* (two-tailed by default) and *F*-statistic
- Approaches
 - 3dANOVA3 –type 5 (three-way ANOVA with one random factor)
 - ∘ If all factors have 2 levels (2x2): 3dttest++, 3dMEMA
 - o Missing data?
 - Unequal number of subjects across groups: 3dMVM, GroupAna
 - Break into t-tests: uber_ttest.py, 3dttest++ (3dttest), 3dMEMA
 - 3dLME

Univariate GLM: popular in neuroimaging

- ♦ Advantages: more flexible than the method of sums of squares
 - No limit on the the number of explanatory variables (in principle)
 - Easy to handle unbalanced designs
 - Covariates can be modeled when no within-subject factors present
- ♦ Disadvantages: costs paid for the flexibility
 - Intricate dummy coding
 - Tedious pairing for numerator and denominator of F-stat
 - Proper denominator SS
 - Can't generalize (in practice) to any number of explanatory variables
 - Susceptible to invalid formulations and problematic post hoc tests
 - Cannot handle covariates in the presence of within-subject factors
 - No direct approach to correcting for sphericity violation
 - Unrealistic assumption: same variance-covariance structure
- ♦ Problematic: When residual SS is adopted for all tests
 - F-stat: valid only for highest order interaction of within-subject factors
 - Most post hoc tests are inappropriate

MVM Implementation in AFNI

- ♦ Program 3dMVM
 - No tedious and error-prone dummy coding needed!
 - Symbolic coding for variables and post hoc testing

Post hoc tests

3dMVM -prefix OutputFile -jobs 8 -SC -bsVars 'Grp*Age' -wsVars 'Cond' -qVars'Age'

 $-num_glt 4$ 'Grp: 1*Pat Cond: 1*Pos' -gltLabel 1 Pat_Pos -gltCode 1 'Grp: 1*Ctl Cond: 1*Pos -1*Neg' gltLabel 2 Ctl_Pos-Neg -gltCode 2 'Grp: 1*Ctl-1*Pat Cond: 1*Pos-1*Neg' gltLabel 3 GrpD_Pos-Neg -gltCode 3 'Grp: 1*Pat Age:' -gltLabel 4 -gltCode 4 Pat_Age

-dataTable

Subj	Grp	Age	Cond	InputFile
S1	Ctl	23	Pos	S1_Pos.nii
S1	Ctl	23	Neg	S1_Neg.nii
S1	Ctl	23	Neu	S1_Neu.nii
S50	Pat	19	Pos	S50_Pos.nii
S50	Pat	19	Neg	S50_Neg.nii
S50	Pat	19	Neu	S50_Neu.nii

Data layout

Group analysis with multiple basis functions

- Shape-fixed method (SFM)
- Shape-estimated method (SEM) via basis functions: TENTzero, TENT, CSPLINzero, CSPLIN
 - Area under the curve (AUC) approach
 - Ignore subtle shape difference
 - Focus on the response magnitude measured by AUC
 - Potential issues: Shape information lost; Undershoot may cause trouble
 - Better approach: maintaining shape information
 - Take individual β values to group analysis
- Shape-adjusted method (SAM) via SPMG2/3
 - Only take the major component to group level
 - Reconstruct HDR, and take the effect estimates

Group analysis with multiple basis functions

- Analysis with effect estimates at consecutive time grids
 - Used to be considered very difficult
 - Figure Extra variable, Time = t_0 , t_1 , ..., t_k
 - P One group of subjects under one condition
 - o Accurate hypothesis H_0 : β_1 =0, β_2 =0, ..., β_k =0 (NOT β_1 = β_2 =...= β_k)
 - Testing the centroid (multivariate testing)
 - 3dLME
 - o Approximate hypothesis H_0 : $\beta_1 = \beta_2 = ... = \beta_k$ (main effect)
 - 3dMVM
 - \circ Result: *F*-statistic for H_0 and *t*-statistic for each time grid

Group analysis with multiple basis functions

- Multiple groups (or conditions) under one condition (or group)
 - o Accurate hypothesis: $\beta_1^{(1)} \beta_1^{(2)} = 0, \beta_2^{(1)} \beta_2^{(2)} = 0, ..., \beta_k^{(1)} \beta_k^{(2)} = 0$
 - 2 conditions: 3dLME
 - o Approximate hypothesis: $\beta_1^{(1)} = \beta_1^{(2)}, \beta_2^{(1)} = \beta_2^{(2)}, ..., \beta_k^{(1)} = \beta_k^{(2)}$
 - Interaction
 - Multiple groups: 3dANOVA3 –type 5 (two-way mixed ANOVA: equal #subjects), or 3dMVM
 - Multiple conditions: 3dANOVA3 –type 4
 - o Focus: do these groups/conditions have different response shape?
 - *F*-statistic for the interaction between Time and Group/Condition
 - *F*-statistic for main effect of Group: group/condition difference of AUC
 - *F*-statistic for main effect of Time: HDR effect across groups/conditions
- Other scenarios: factor, quantitative variables
 - o 3dMVM

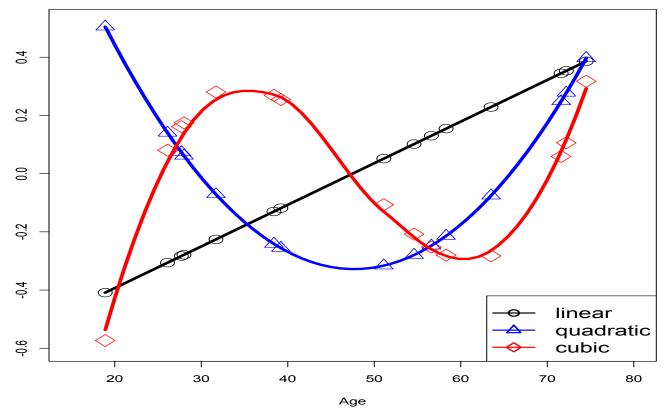
Correlation analysis

Correlation between brain response and behavioral measures

$$\hat{\beta}_i = \alpha_0 + \alpha_1 * x_i + \epsilon_i$$

- P Difference between correlation and regression?
 - Essentially the same
 - When explanatory and response variable are standardized,
 the regression coefficient = correlation coefficient
- Two approaches
 - Standardization
 - Convert *t*-statistic to *r* (or determination coefficient)

$$R^2 = t^2/(t^2 + DF)$$


o Programs: 3dttest++, 3dMEMA, 3dMVM, 3dRegAna

Trend analysis

- Correlation between brain response and some gradation
 - Linear, quadratic, or higher-order effects
 - Habituation or attenuation effect across time (trials)
 - Between-subjects: Age, IQ
 - Fixed effect
 - Within-subject measures: morphed images
 - Random effects involved: 3dLME
 - Modeling: weights based on gradation
 - Equally-spaced: coefficients from orthogonal polynomials
 - o With 6 equally-spaced levels, e.g., 0, 20, 40, 60, 80, 100%,
 - Linear: -5 -3 -1 1 3 5
 - Quadratic: 5 -1 -4 -4 -1 5
 - Cubic: -5 7 4 -4 -7 5

Trend analysis

- Correlation between brain response and some gradation
 - Modeling: weights based on gradation
 - o Not equally-spaced: constructed from, e.g., poly() in R
 - Ages of 15 subjects: 31.7 38.4 51.1 72.2 27.7 71.6 74.5 56.6
 54.6 18.9 28.0 26.1 58.3 39.2 63.5

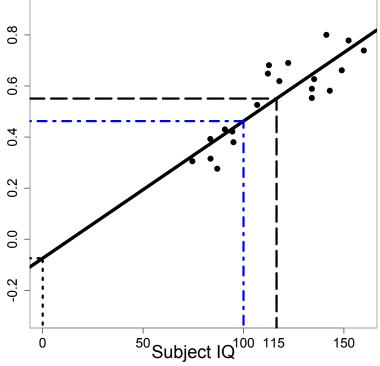
Trend analysis: summary

- Cross-trials trend: AM2 with weights
- Modeling with within-subject trend
 - Run GLT with appropriate weights at individual levels
- Modeling with within-subject trend: 3 approaches
 - Set up GLT weights among factor levels at group level 3dANOVA2/3,
 3dMVM, 3dLME: best with equally-spaced with even number of levels
 - Set up the weights as the values of a variable
 - Needs to account for deviation of each subject
 - 3dLME
 - Run trend analysis at individual level (*i.e.*, -gltsym), and then take the trend effect estimates to group level
 - Simpler than the other two approaches

Group analysis with quantitative variables

- Covariate: 3 usages
 - Quantitative (vs. categorical) variable
 - o Age, IQ, behavioral measures, ...
 - Of no interest to the investigator
 - Age, IQ, sex, handedness, scanner,...
 - Any explanatory variables in a model
- Variable selection
 - Infinite candidates: relying on prior information
 - P Typical choices: age, IQ, RT, ...
 - RT: individual vs. group level
 - o Amplitude modulation: cross-trial variability at individual level
 - o Group level: variability across subjects

Group analysis with quantitative variables

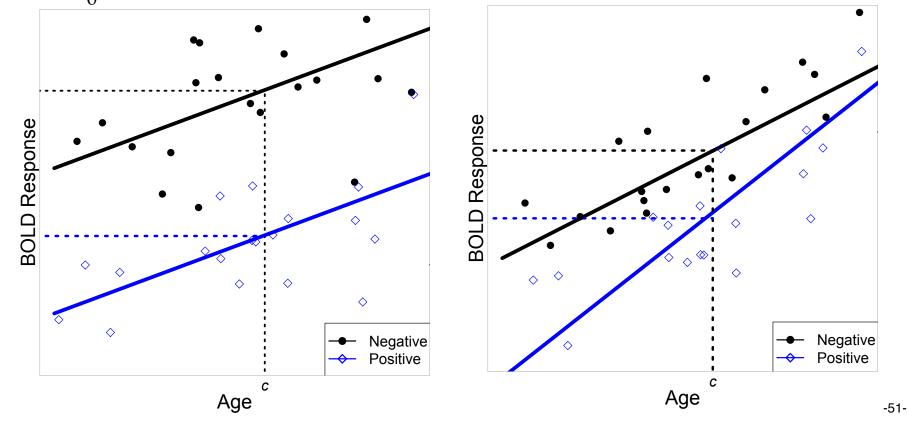

- Conventional framework
 - ANCOVA: one between-subjects factor (e.g., sex) + one quantitative variable (e.g., age)
 - Extension to ANOVA: GLM
 - Homogeneity of slopes
- Broader framework
 - Any modeling approaches involving quantitative variables
 - o Regression, GLM, MVM, LME
 - Trend analysis, correlation analysis

Quantitative variables: subtleties

• Regression: one group of subjects + quantitative variables

$$\hat{\beta}_i = \alpha_0 + \alpha_1 * x_{1i} + \alpha_2 * x_{2i} + \epsilon_i$$

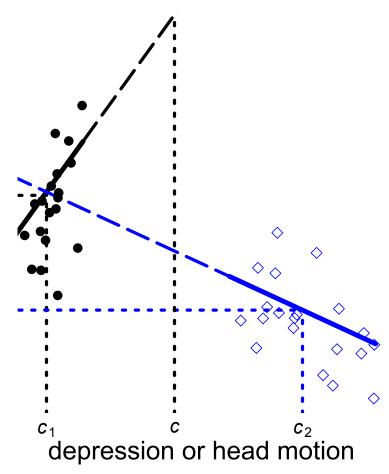
- Interpretation of effects
 - $\circ \alpha_1$ slope (change rate, marginal effect): effect per unit of x
 - $\circ \alpha_0$ intercept: group effect while x=0
 - Not necessarily meaningful
 - Linearity may not hold
 - Solution: centering crucial
 - for interpretability
 - Mean centering?



Quantitative variables: subtleties

Trickier scenarios with two or more groups

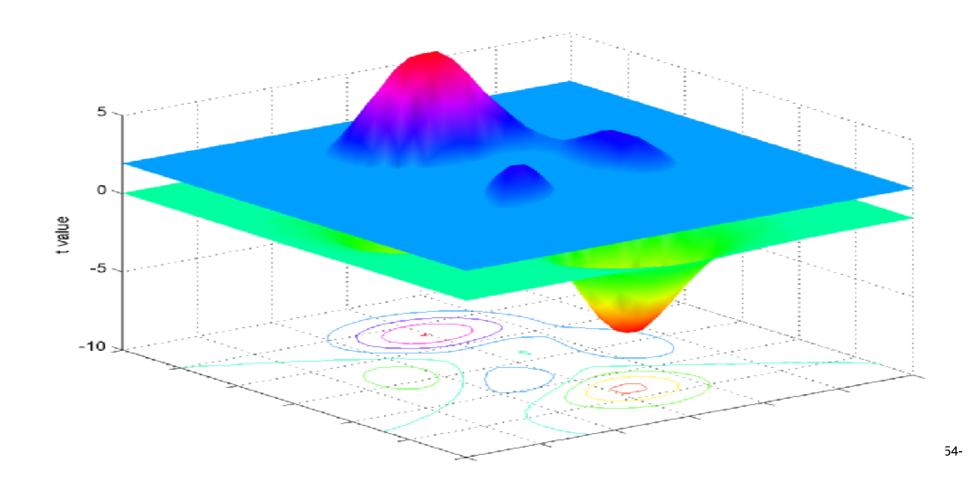
$$\hat{\beta}_i = \alpha_0 + \alpha_1 * x_{1i} + \alpha_2 * x_{2i} + \alpha_3 * x_{3i} + \epsilon_{ij}$$


- Interpretation of effects
 - Slope: Interaction! Same or different slope?
 - $\circ \alpha_0$ same or different center?

Quantitative variables: subtleties

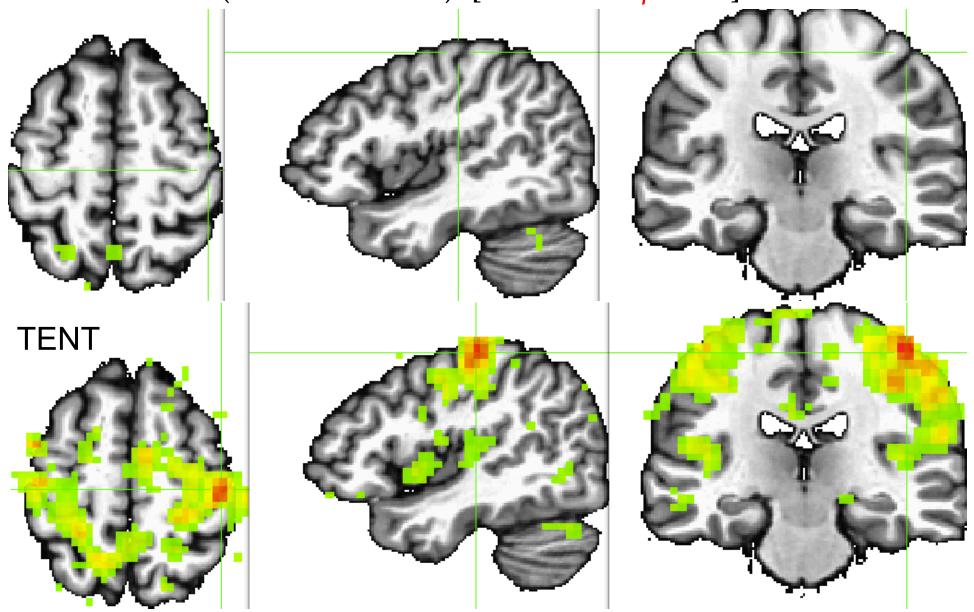
Trickiest scenario with two or more groups

$$\hat{\beta}_i = \alpha_0 + \alpha_1 * x_{1i} + \alpha_2 * x_{2i} + \alpha_3 * x_{3i} + \epsilon_{ij}$$

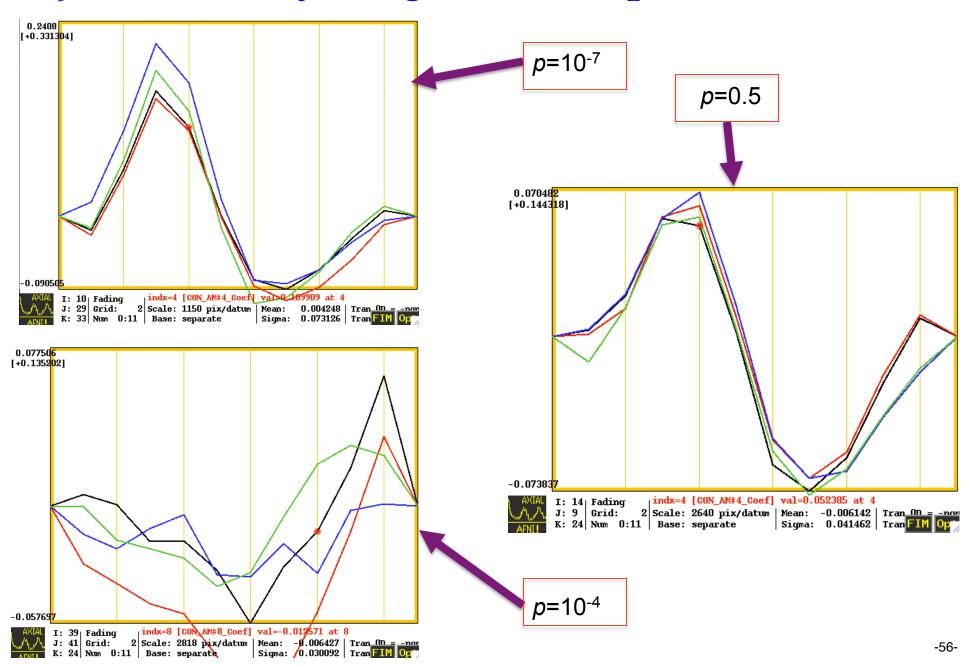

• More details: http://afni.nimh.nih.gov/sscc/gangc/centering.html

Why should we report response magnitudes?

- Unacceptable in some fields if only significance is reported
 - Neuroimaging: an exception currently!
- Obsession in FMRI about p-value!
 - Colored blobs of t-values
 - Peak voxel selected based on peak *t*-value
- Science is about reproducibility
 - Response amplitude should be of primacy focus
 - Statistics are only for thresholding
 - No physical dimension
 - o Once surviving threshold, specific values are not informative


Basics: Null hypothesis significance testing (NHST)

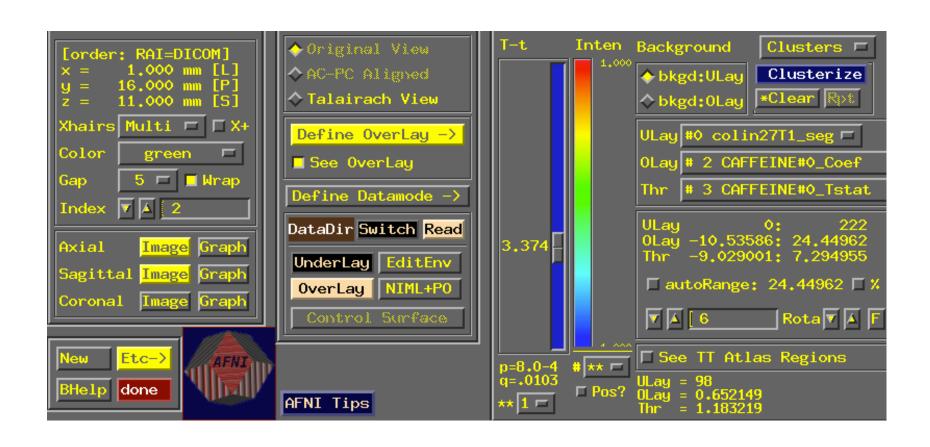
- Should science be based on a dichotomous or binary inference?
 - o If a cluster fails to survive for thresholding, there is no value?
 - ∘ SVC: Band-Aid solution



Modeling strategy & results: an example

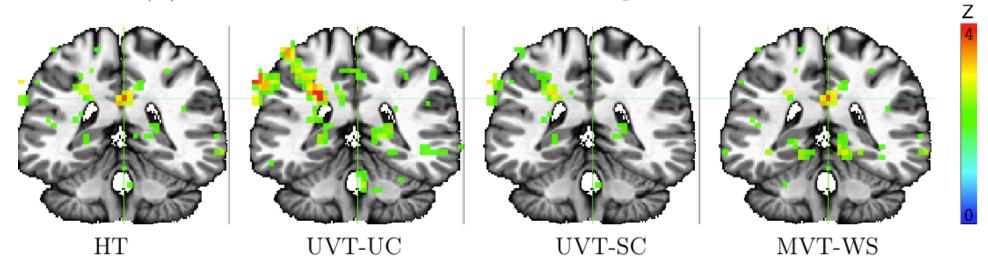
SPMG3: 1st β (canonical HDR) [voxel-wise p=0.01]

Is *p*-value everything? An example


Advantages of SEM

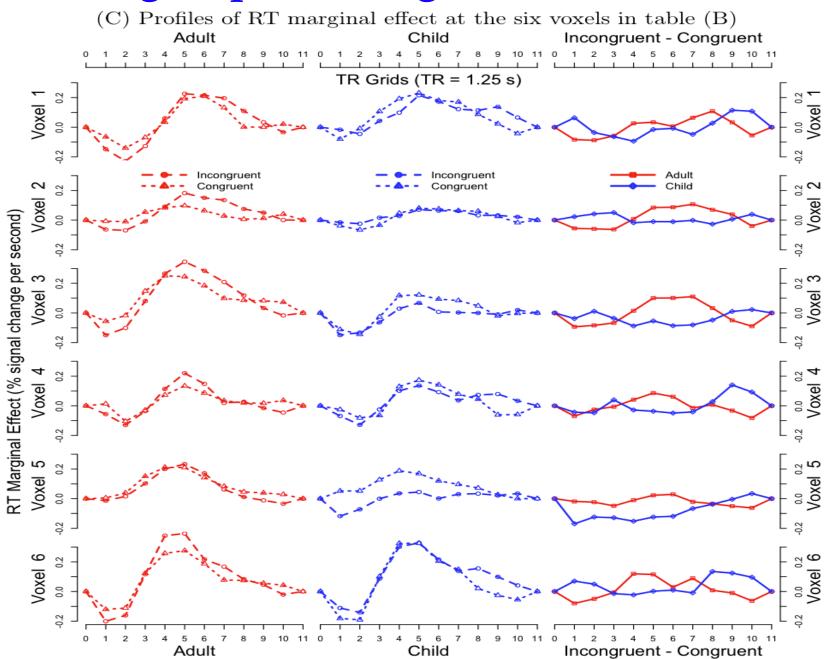
- Multiple basis functions
 - o TENTzero, TENT, CSPLINzero, CSPLIN
 - Similar to FIR in SPM, but FIR does not allow non-TRsynchronized modeling
- Higher statistical power than SFM and SAM
 - More likely identifying activations
- Extra support for true positives (TP) with HDR signature shape
 - Unavailable from SFM and SAM
- Crucial evidence if significance is marginal: false negatives (FP)
- Avoiding false positives (FP)
- Works best for event-related experiments
 - Useful for block designs: habituation, attenuation,...

How rigorous about corrections?


- Two types of correction
 - Multiple testing correction n(MTC): same test across brain
 ∠FWE, FDR, SVC(?)
 ∠People (esp. reviewers) worship this!
 - Multiple comparisons correction (MCC): different tests
 - ∠ Happy vs. Sad, Happy vs. Neutral, Sad vs. Neutral
 - \angle Two one-sided *t*-tests: p-value is $\frac{1}{2}$ of two-sided test!
 - ∠ How far do you want to go?
 - o Tests in one study
 - o Tests in all FMRI or all scientific studies?
 - ∠ Nobody cares the issue in FMRI
- Many reasons for correction failure
 - Region size, number of subjects, alignment quality, substantial cross-subject variability (anxiety disorder, depression, ...)

Presenting response magnitudes

Presenting response magnitudes


(A) Coronal view of interaction effect of Group:Condition:Time

(B) Sphericity scenarios at six representative voxels

	Voxel	Spherici	ty		UVT-UC	UVT-SC	MVT-WS	HT
No.	coordinates	Mauchly p-value	ϵ_{GG}	ϵ_{HF}	p-value	p-value	p-value	taking
1	-2 36 27	0	0.32	0.35	0.28	0.31	0.00021	MVT-WS
2	-33 -5 42	0	0.42	0.46	3.8×10^{-6}	8.4×10^{-4}	1.6×10^{-4}	MVT-WS
3	-50 -16 24	0	0.45	0.50	1.6×10^{-4}	0.0041	0.14	MVT-WS
4	-5 -20 23	8.7×10^{-6}	0.68	0.79	1.8×10^{-5}	0.0001	0.008	UVT-SC
5	37 68 20	0	0.30	0.32	0.012	0.074	0.15	MVT-WS
6	-36 -16 7	0	0.53	0.60	1.8×10^{-5}	5.3×10^{-4}	0.0019	UVT-SC

Presenting response magnitudes

IntraClass Correlation (ICC)

- Reliability (consistency, reproducibility) of signal: extent to which the levels of a factor are related to each other
 - ₱ Example 3 sources of variability: conditions, sites, subjects
 - Traditional approach: random-effects ANOVAs
 - LME approach

$$\hat{\beta}_{ijk} = \alpha_0 + \alpha_1 * x_k + b_i + c_j + d_k + \epsilon_{ijk}, b_i \sim N(0, \tau_1^2), c_j \sim N(0, \tau_2^2), d_k \sim N(0, \tau_3^2), \epsilon_{ijk} \sim N(0, \sigma^2)$$

$$ICC_l = \frac{\tau_l^2}{\tau_l^2 + \tau_2^2 + \tau_3^2 + \sigma^2}, l = 1, 2, 3$$

₱ 3dICC_REML, 3dLME

Group Analysis: Non-Parametric Approach

- Parametric approach
 - P Enough number of subjects n > 10
 - Random effects of subjects: usually Gaussian distribution
 - Individual and group analyses: separate
- Non-parametric approach
 - Moderate number of subjects: 4 < n < 10
 - No assumption of data distribution (e.g., normality)
 - Statistics based on ranking or permutation
 - Individual and group analyses: separate

Group Analysis: Fixed-Effects Analysis

- When to consider?
 - LME approach
 - P Group level: a few subjects: n < 6
 - Individual level: combining multiple runs/sessions
- Case study: difficult to generalize to whole population
- Model $\beta_i = b + \varepsilon_i$, $\varepsilon_i \sim N(0, \sigma_i^2)$, σ_i^2 : within-subject variability
 - Fixed in the sense that cross-subject variability is not considered
- Direct fixed-effects analysis (3dDeconvolve/3dREMLfit)
 - P Combine data from all subjects and then run regression
- Fixed-effects meta-analysis (**3dcalc**): weighted least squares
 - $\beta = \sum w_i \beta_i / \sum w_i$, $w_i = t_i / \beta_i = \text{weight for } i \text{th subject}$
 - $P t = \beta \sqrt{\sum w_i}$

Non-Parametric Analysis

- Ranking-based: roughly equivalent to permutation tests
 - 3dWilcoxon (~ paired t-test)
 - 3dFriedman (~ one-way within-subject with 3dANOVA2)
 - 3dMannWhitney (~ two-sample *t*-test)
 - 3dKruskalWallis (~ between-subjects with 3dANOVA)
- Pros: Less sensitive to outliers (more robust)
- Cons
 - > Multiple testing correction **limited** to FDR (**3dFDR**)
 - > Less flexible than parametric tests
 - Can't handle complicated designs with more > 1 fixed-effects factor
 - Can't handle covariates
- Permutation approach?

Group Analysis Program List

- 3dttest++ (one-sample, two-sample and paired t) + covariates (voxel-wise)
- 3dMEMA (R package for mixed-effects analysis, t-tests plus covariates)
- 3ddot (correlation between two sets)
- 3dANOVA (one-way between-subject)
- 3dANOVA2 (one-way within-subject, 2-way between-subjects)
- 3dANOVA3 (2-way within-subject and mixed, 3-way between-subjects)
- 3dMVM (AN(C)OVA, and within-subject MAN(C)OVA)
- 3dLME (R package for sophisticated cases)
- 3dttest (mostly obsolete: one-sample, two-sample and paired t)
- 3dRegAna (obsolete: regression/correlation, covariates)
- GroupAna (mostly obsolete: Matlab package for up to four-way ANOVA)

FMRI Group Analysis Comparison

		AFNI	SPM	FSL	
t-test (one-, two-sample, paired)		3dttest++, 3dMEMA	Yes	FLAME1, FLAME1+2	
One categorical variable: one-way ANOVA		3dANOVA/2/3, GroupAna	Only one WS factor: full and flexible factorial design	Only one within- subject factor: GLM in FEAT	
Multi-way AN(C)OVA		3dANOVA2/3, GroupAna, 3dMVM			
Between-subject covariate		3dttest++, 3dMEMA, 3dMVM	Partially	Partially	
Sophisticated situations	Covariate + within-subject factor				
	Subject adjustment in trend analysis	3dLME			
	Basis functions				
	Missing data				

Overview

- Basic concepts
 - Why do we need to do group analysis?
 - o Factor, quantitative covariates, main effect, interaction, ...
- Various group analysis approaches
 - ∘ Regression (*t*-test): 3dttest++, 3dMEMA, 3dttest, 3RegAna
 - AN(C)OVA: 3dANOVAx, 3dMVM, GroupAna
 - Quantitative covariates: 3dttest++, 3dMEMA, 3dMVM, 3dLME
 - Impact & consequence of SFM, SAM, and SEM
- Miscellaneous
 - Issues regarding result reporting
 - Intra-Class Correlation (ICC)
 - Nonparametric approach and fixed-effects analysis
- No routine statistical questions, only questionable routines!